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Abstract: An engineering methodology is developed to build hazard curves to evaluate the probability of flood-induced overtopping of
barriers in watershed-reservoir-dam systems. The probable maximum precipitation in the watershed under consideration and its distribution in
time during the acting storm is estimated. Considering the effects of the local geology, soil, topography, and land use, a random representation
of the storm hourly rain is translated into effective runoff, including losses due to evaporation, interception, and surface retention. The
uncertainty in the hydrological characteristics of the drainage basin is captured by a random time to concentration. Random hourly unit
graphs are constructed analytically for a convex watershed and convoluted with the storm time-history to result in the random hydrograph
for the inflow flood into the reservoir of the dam system. Flood routing through the reservoir is then computed with or without noise in
the model. The deterministic path leads to a hydrograph for the water level at the barrier upstream face. The stochastic path evaluates
through simulation the probability density function of variates (at discrete times) of the nonstationary random process of this pool level.
The characterization of the reservoir-pool maxima allows the estimation of the probability of barrier overtopping. DOI: 10.1061/(ASCE)HE
.1943-5584.0000361. © 2011 American Society of Civil Engineers.
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Introduction

During the last decade, the U.S. Army Corps of Engineers has
embarked in a research program to produce engineering tools to
assist analysts and decision makers in evaluating the components
of dam and levee portfolios exposed to natural hazards. Risk-based
approaches to barrier safety assessment provide a rational means to
allocate limited resources to required maintenance and retrofit
projects. This investigation is a contribution to the research effort
concerning the overtopping of barriers under flood in overall
watershed-reservoir-dam systems subjected to extreme water-input
events.

A realistic mathematical model for an inherently random water-
shed-reservoir-dam system must involve the probabilistic represen-
tation of some of its components. A closed-form solution for the
response of the system to a given water-input event proves difficult
to obtain, if not impossible, in view of the complexity and ultimate
nonlinearity of the governing formulations. Consequently, to arrive
at useful conclusions in the study of a given system, the analyst
must conduct a large number of numerical simulations of possible
realizations. For this procedure to be practical in exercises of risk
assessment of spillways and dam nonoverflow monoliths under
flood hazard, the associated mathematical model must be both ef-
fective and economical. This paper introduces an engineering
model to evaluate the probability of flood-induced overtopping

of barriers in watershed-reservoir-dam systems by means of math-
ematical simulations while capturing the essential characteristics of
the physical system.

Hyetographs for a given basin are built by inserting rational
elements into the current state of practice [U.S. Bureau of
Reclamation (USBR) 1976, 1977]. A simplified representation
of the watershed is introduced at the level of the fundamental unit
graph. All subsequent compositions are mathematically rigorous,
leading to a convolution integral for a rational watershed-output
hydrograph. The reservoir is represented by a nonlinear ordinary
differential equation formulated on the basis of the principle of con-
tinuity and on the assumption of a convex reservoir. The spillway
discharge is modeled by using the von Mises semiempirical
formula for a wide-weir flow (Street et al. 1996). Deterministic in-
terpretations of the model provide insight into the physical behavior
of the system through parametric studies on the occurrence of hy-
drograph peaks, response spectra, and residual reservoir pools.
Stochastic interpretations of the model provide insight into the re-
sulting response random processes and the associated hazard
curves necessary for subsequent evaluations of the probabilities
of occurrence of multiple failure modes, e.g., overtopping, over-
stressing, overturning, and sliding instability (Ellingwood 1995,
de Béjar 1999).

The relevant features of the USBR-recommended procedure
for input-event characterization are retained in this model. Soil
Conservation Service (SCS) maps of probable maximum precipi-
tation (PMP) during extreme storms are adopted as mean values of
extreme-value distributions (Miller and Clark 1960). USBR empir-
ical factors for the determination of excess rain are directly imple-
mented, as are the SCS charts for cover and land use complex
coefficients.

To focus on the effect of a few essential factors on the system
response, and to keep the formulation sufficiently simple to
promote physical insight, only two basic random variables are
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included in the watershed stochastic model: (1) the storm magni-
tude, and (2) the watershed characteristic centroidal lag time. The
study of the random process representing the variation in reservoir
pool in response to the water-input event is conducted with and
without the presence of noise in the reservoir for comparison
among the resulting hazard curves.

Analytical Models

The physical system to be modeled consists of three major com-
ponents (Fig. 1): the watershed or drainage basin; the reservoir
or excess-rain storage; and the spillway-dam structure, generally
equipped with a gate system for flood control and evacuation.

The U.S. Weather Bureau, in collaboration with the U.S. Army
Corps of Engineers, has developed empirical charts to estimate the
historical 6-h, 10 mi2 PMP attributable to a uniform storm on such
a point within the basin area (USBR 1976, 1977). The proper chart
to be applied depends on the specific geographical location of the
project site. The charts are built for U.S. zones either east or west of
the 105° meridian. To be specific, the model developed in this re-
search applies to U.S. watersheds east of the 105° meridian, but a
parallel development may just as easily be formulated for U.S.
western watersheds.

Subsequently, the point-storm PMP is scaled up on the basis of
empirical charts for the size of the specific drainage area under con-
sideration and for several values of storm duration in order to es-
timate upper bounds of cumulative total rain falling uniformly over
the watershed. These estimates of precipitation are taken as the
known PMP distribution in time in the deterministic formulations,
or as mean values of the extreme-value distribution of the largest
values, Type I (Gumbel distribution) in the probabilistic formula-
tions (Benjamin and Cornell 1970).

The watershed represents the first filter in the system. A substan-
tial portion of the falling rain is lost because of a variety of factors.
Among the main factors contributing to rain loss are (1) evaporation
and transpiration; (2) retention by vegetation and by topographic
details of the terrain (including minor ponds); and (3) surficial in-
filtration and deep percolation, depending on the type of soil cover

and the geological characteristics of the region. The difference be-
tween total rain and losses other than those from rapid drainage
water flowing through cover soil is the excess rain, defined as run-
off in this investigation.

Runoff is evacuated relatively rapidly from the watershed
through open channels and rivers that lead to the reservoir entrance
(Point B in the schematic representation in Fig. 1), where the runoff
flow QðtÞ can be measured (Fig. 2).

The storm total rain is translated into incremental runoff using
semiempirical transformations (Miller and Clark 1960) that include
consideration of a complex index to classify the watershed accord-
ing to the cover soil and the land use. This piecewise-constant ef-
fective water-input history is applied to the watershed hourly during
the first 6 h of storm, and thereafter in incremental time intervals of
6, 12, and 24 h., respectively. However, the order of hourly precipi-
tation during the first 6 h of the storm cannot be predicted. There-
fore, in this model, the specific order of the rain steps for a given
storm is subjected to aleatory permutation, whether the represen-
tation is deterministic or not.

Fig. 2 shows the longitudinal section of the analytical model for
the reservoir component in the system. The input flow QðtÞ repre-
sents the response of the watershed to the water-input event. The
spillway outflow, q½hðtÞ; c�, at the opposite end of the reservoir (see
Fig. 3) depends on the discharge coefficient c, which in turn is a
function of the weir elevation z, and of the reservoir elevation hðtÞ
itself, giving rise to a highly nonlinear governing differential
equation for the response. The reservoir water level over the spill-
way crest hðtÞ is directly related to the storm-water storage and
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Fig. 1. Schematic plan view of a watershed-reservoir-dam system
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Fig. 2. Longitudinal section of analytical model of a reservoir
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Fig. 3. Transverse section of analytical model of nonoverflow dam
monolith (spillway crest is schematically represented by the dotted
line)

1

2

2 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / SEPTEMBER 2011



represents the hazard on the dam structure whose safety is to be
evaluated against various potential modes of failure, e.g., overtop-
ping of nonoverflow barriers. For simplicity, the pool level at the
beginning of the storm is considered to be that of the spillway crest,
but any other convenient datum may be arbitrarily defined.

The model differs from the real reservoir by the fact that the
bottom of the reservoir may be randomly covered with sediments
over time, and also that topographical surveys are imperfect, par-
ticularly in the vicinity of the boundary of the reservoir. The cor-
responding effects on the governing differential equation for the
reservoir response are optionally included in the probabilistic
version of the model by adding a Gaussian noise component to
the input random process.

Convex Unit Graph

The convex model for the response of a watershed to a water-input
event is based on the principle of continuity and on a postulated
linear relationship between the response flow q½hðtÞ; c� and the
watershed storage SðtÞ. When the storm inflow is constant, the gov-
erning differential equation may be expressed as (Dingman 1994)

dS
dt

þ
�

1
T�

�
· S ¼ ω0 ð1Þ

where T� = centroidal lag between the inflow and outflow hydro-
graphs, a constant characteristic of the watershed. The solution to
this equation under zero initial conditions is

qðtÞ ¼ SðtÞ
T� ¼ ω0 · ð1� e�k� ·tÞ; 0 ≤ t ≤ tω ð2Þ

where k� ¼ 1=T�. This result indicates that the output response
approaches asymptotically the inflow ω0 as far as the termination
of the water-input event tω. At this time the recession limb of the
response starts an exponential decay toward the zero-flow value.
This indicates that the time to concentration of the model tends
to infinity, similar to the time to concentration of a real watershed.
The recession limb of the response is given by

qðtÞ ¼ qpk · e�k� ·ðt�tωÞ; t > tω ð3Þ
where qpk ¼ qðtωÞ = maximum value of the outflow. The only
parameter characterizing the response is T�, which may be esti-
mated as

T� ¼ Lr
Uw

ð4Þ

where Lr = length of the longest reach in the drainage basin
(distance between Points A and B along the stream in Fig. 1);
and Uw = velocity of propagation of the flood wave.

The convex unit graph is defined in this investigation as the out-
flow response of the watershed to a constant-rate water-input event
with a total volume of unit value (i.e., a volume of rain with 1 cm of
depth and uniformly distributed over the whole drainage area). The
duration of this constant-rate water-input event is the unit period,
which in this model is set as 1 h.

Watershed Response Hydrograph

The watershed response hydrograph is obtained by superposition in
time of the scaled hydrographs corresponding to the actual incre-
mental effective rain volumes (expressed in centimeters of rain uni-
formly distributed over the whole watershed area). Analytically,
this procedure can be generalized by considering the response
to a unit-volume input rain concentrated at the origin of time. In
other words, the watershed output response is in this case the

unit-impulse response function uðtÞ, as the input rain is a Dirac
delta function at the origin of time, i.e., a zero-duration unit-volume
rain at t ¼ 0. In this case, the governing differential equation for the
watershed becomes

T� ·
du
dt

þ uðtÞ ¼ δðtÞ ð5Þ

with initial condition uð0Þ ¼ 0. The general solution of this equa-
tion is

uðtÞ ¼ A · e�k� ·t ð6Þ
The constant of integration A may be obtained by integrating
Eq. (5) over the infinitesimal time interval (�ε, þε), and taking
the limit as ε → 0, to obtain the unit-impulse response function as

uðtÞ ¼ k� · e�k�·t; t > 0 ð7Þ
The watershed response hydrograph to an inflow with the rate of
rain rðtÞ may be obtained by superposition in the time domain and
is given by the convolution integral

qðtÞ ¼
Z

t

0þ
rðt � τÞ · uðτÞ · dτ ; t > 0 ð8Þ

In fact, the response to rðtÞ ¼ ω0 = constant may also be obtained
as the expressions in Eqs. (2) and (3) by direct evaluation of Eq. (8).

Fig. 4 shows a family of these responses for a storm with mag-
nitude ω ¼ 1 dkm3=s acting during 4 h. The parameter T� for the
family of curves vary from a value T� ¼ 25 h. (a slow-evacuation
watershed) to a value T� ¼ 2:5 h. (a rapid-evacuation watershed).
The slow watersheds have smaller peak values of outflow and
larger residual flows at the end of the period under consideration
(10 h). On the other hand, the rapid watersheds often get almost
to the asymptotic value ω0 within the storm duration and rapidly
decay toward zero residual flow upon storm termination.

The procedure described up to this point to construct the inflow
design flood hydrograph into the reservoir (i.e., the watershed
outflow hydrograph) is shown in the flow diagram in Fig. 5. This
schematic structure is followed in both the deterministic and the
probabilistic versions of the model under construction. Again,
the probabilistic model concentrates on the effects of a random
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Fig. 4. Family of convex-watershed responses to a uniform runoff flow
ωo acting during a finite time interval (4 h); curves in the set are char-
acterized by the centroidal lag time T�
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water-input event magnitude and of a random watershed centroidal
lag T�.

Deterministic Model

An examination of the physical quantities entering the deterministic
formulation for the response of the watershed-reservoir-dam sys-
tem to a water-input event and its sensitivity to variations in those
quantities proves to be insightful in revealing the fundamental
nature of the relations involved.

Watershed Routing

In this model, the response of the watershed-reservoir-dam system
is followed for a time interval of 60 h after the beginning of
the storm, which is assumed to last 48 h. The subscript i ¼
1; 2;…; 6 refers to the first six 1-h intervals; i ¼ 7; 8; 9 refers to
the time intervals following the first 6 h of storm duration with time
lengths of 6, 12, and 24 h, respectively; and i ¼ 10 refers to the last
12 h of rain-free history of response.

The procedure to determine the incremental runoff during each
of these intervals follows the standard recommendations of practice
(Miller and Clark 1960; USBR 1976, 1977). According to the geo-
graphical location and extension of the watershed, the 6-h point
PMP is distributed in time and expressed as the accumulative rain
fall in the actual-size watershed at the end of each of the intervals
described previously (ri, i ¼ 6;…; 9). This distribution may be
expressed as

ri þ 5 ¼ ai · ρ; i ¼ 1; ::; 4 ð9Þ

where ρ = 6-h point PMP; and ai = empirical coefficient. Likewise,
the accumulative rainfall at the end of each of the first six 1-h
intervals may be expressed as

ri ¼ bi · r6; i ¼ 1; ::; 6 ð10Þ

where r6 = accumulative total rain at the end of 6 h of storm, as
provided by Eq. (9); and bi = empirical coefficient. Therefore, the
incremental total rain corresponding to each of the first 1-h inter-
vals is given by

Δr1 ¼ r1; Δri ¼ ri � ri�1; i ¼ 2;…; 6 ð11Þ
Again, the order of these first six 1-h incremental contributions to
the total precipitation cannot be predicted, and they are given an
aleatory permutation, after which the accumulative total rain is
recalculated according to

r1 ¼ Δr1; ri ¼ ri�1 þΔri; i ¼ 2;…; 9 ð12Þ
Next, the accumulative and incremental effective precipitations
(direct runoff) are calculated. These calculations require the estima-
tion of the local hydrologic soil-cover complex number (S) accord-
ing to the soil-series classification and the combined land use at the
site (USBR 1976, 1977), modified according to the antecedent con-
ditions. The U.S. SCS (Miller and Clark 1960) recommends the use
of the following fit to estimate runoff (based on numerous statistical
studies and assuming the initial abstraction as Ia ¼ 0:2 · S):

pi ¼
ðri � 0:2 · SÞ2
ri þ 0:8 · S

; i ¼ 1; ::; 9 ð13Þ

where pi = accumulative runoff at the end of the ith time interval;
and

Δp1 ¼ p1; Δpi ¼ pi � pi�1; i ¼ 2;…; 9 ð14Þ
where Δpi = incremental runoff corresponding to the ith time in-
terval.

There is a physical lower bound for the hourly loss during each
interval (Miller and Clark 1960). In this model, the hourly loss is not
allowed to be less than 1.27 mm. Upon insertion of this minimum
value, the incremental runoff is recalculated for each interval as

Δp�i ¼ Δri �ΔLi; i ¼ 1; ::9 ð15Þ
and

p�1 ¼ Δp�1; p�i ¼ Δp�i þ pi�1; i ¼ 2;…; 9 ð16Þ
whereΔLi = total loss corresponding to the ith interval; and symbols
with an attached asterisk correspond to the recalculated quantities.

The watershed routing is completed using the convolution inte-
gral in Eq. (8) reformulated for computational analysis. When the
input effective precipitation is represented by a piecewise constant
function, Eq. (8) provides the watershed response upon water-input
event termination as

qðtÞ ¼
X9
i¼1

qpk;i · e�k�·ðt�tiÞ; t > tω

in other words

qðtÞ ¼
X9
i¼1

ðRecessÞi ð17Þ

where ðRecessÞi = contribution of the recession limb of the re-
sponse to the ith increment of direct runoff when acting alone dur-
ing the time interval ending at ti; and qpk;i = corresponding
maximum response [as in Eq. (3)]; and the following watershed
response for times within the duration of the water-input event:

qðtÞ ¼
Xj

i¼1

ðRecessÞi þ pjþ1 · ð1� e�k� ·ðt�tjÞÞ;

tj < t ≤ tω; j ≥ 0 ð18Þ

when the response is evaluated within the (jþ 1)th interval, and the
initial time is zero.

Fig. 5. Procedure to construct an inflow-flood hydrograph for a typical
reservoir
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Reservoir Routing

The outflow from the routing of rain fall through the watershed
represents the inflow for the reservoir component. Based on the
principle of continuity, the governing differential equation for
the reservoir routing in terms of the pool at the upstream face
of the dam, hðtÞ, is given by (Jiang 1998)

dh
dt

¼ QðtÞ � q½hðtÞ; c�
G½hðtÞ� ð19Þ

where QðtÞ = inflow from the watershed given by Eqs. (17) and
(18); q½hðtÞ; c� = outflow through the spillway weir; c = correspond-
ing discharge coefficient; and GðhÞ = gradient of variation of the
reservoir storage as a function of the reservoir pool. Other outlet
works may be included in q½hðtÞ; c�, if present. In this model,
for simplicity, only a rectangular spillway weir is considered.
The outflow through a rectangular weir may be estimated by (Street
et al. 1996)

q½hðtÞ; c� ¼ 2
3
· b · c ·

ffiffiffiffiffi
2g

p
· hðtÞ3=2 ð20Þ

where b = weir length; c = discharge coefficient; and g = acceler-
ation of gravity. Von Mises has developed a simple semiempirical
expression for the coefficient of discharge as (Olson 1961)

c ¼ 0:611þ 0:075 ·
hðtÞ
z

ð21Þ

where z = height of the spillway crest over the reservoir bot-
tom (Fig. 3).

The reservoir storage may be regressed empirically as a quad-
ratic function of the reservoir pool (Jiang 1998), leading to a linear
fit for the corresponding gradient, which may be expressed as

GðhÞ ¼ αþ β · h ð22Þ
where α and β = empirical coefficients for the reservoir considered,
given in consistent units, i.e., α ½m3=m� and β ½m2=m�. Inserting
Eqs. (17), (18), and (20)–(22) into Eq. (19) leads to a nonlinear
ordinary differential equation for hðtÞ that can be solved numeri-
cally (Hoggan 1997).

Computational Analysis

The watershed centroidal lag is estimated in the computational im-
plementation of the model by using the empirical equation inferred
by the California Highways and Public Works (Miller and Clark
1960):

T� ¼ 0:95 ·

�
L3

H

�
0:385

ð23Þ

where L = length of the longest watercourse in kilometers (i.e., the
distance between Points A and B along the stream in Fig. 1);
H = elevation difference (between the same Points A and B in
Fig. 1) in meters; and T� is obtained in hours.

To be specific, a typical watershed was selected to conduct the
parametric studies in this investigation (de Béjar 2001). The sample
watershed-reservoir-dam system is located in Zone 7, east of the
105° meridian. The basin area measures 160 km2, and the longest
course is 30 km, with an elevation difference of 120 m. The local
hydrologic soil-cover complex number (S) is derived from an esti-
mated SCS curve number of 65, and the deterministic 6-h point
PMP is stipulated as 65 cm of rain.

The selected site is assumed in Peoria County, Illinois, with
antecedent moisture condition Type II, which takes the soil

moisture supply within the watershed to be similar to the average
conditions just before the occurrence of the maximum annual flood
(Miller and Clark 1960). Maps of local soil series indicate that over
50% of the area is composed of either Clinton or Carrington soils;
therefore, in terms of the relative infiltration rate, the watershed
soil is considered SCS Group B. The local usage is composed
of (1) row crops (45%); leading to an SCS curve number of 75;
(2) legumes (35%), leading to an SCS curve number of 69; and
(3) pasture (20%), leading to an SCS curve number of 35. The
resultant composite curve number is 0:45 · ð75Þ þ 0:35 · ð69Þþ
0:20 · ð35Þ ¼ 64:9, say 65. The corresponding local hydrologic
soil-cover complex number can be estimated as S ¼ 1;000=
ðcurve numberÞ � 10 ¼ 1;000=65� 10 ¼ 5:39, say 5.4.

The reservoir routing is characterized by the regression
parameters α ¼ 4;740 m3=m and β ¼ 35 m2=m, and the barrier
spillway at its far end has an ogee at elevation z ¼ 90 m and a weir
length of 27 m. The parametric studies are based on variations, one
parameter at a time, from this basic watershed-reservoir-dam sys-
tem configuration.

Surface Hydrographs

Next, the watershed outflow hydrograph and the associated reser-
voir-pool hydrograph are generated for a drainage basin with a
continuously varying centroidal lag. Figs. 6 and 7 show the result-
ing surface hydrographs for a rather severe design storm with
PMP ¼ 75 cm. Notice the pronounced peak of the hydrographs
(i.e., of the trace of the corresponding surface on the plane

Fig. 6. Three-dimensional representation of a typical watershed out-
flow hydrograph surface (deterministic PMP ¼ 75 cm)

Fig. 7. Three-dimensional representation of a typical reservoir-pool
hydrograph surface (deterministic PMP ¼ 75 cm)
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T� ¼ constant) for watersheds with rapid-evacuation characteris-
tics (relatively short T�) and the small residual quantity at the
end of the response history. Watersheds with slow-evacuation char-
acteristics (relatively long T�) tend to remain flat in time, and there-
fore they show larger residual quantities at the end of the response
history. Figs. 8 and 9 show these hydrographs for the selected de-
sign storm with PMP ¼ 75 cm. The trends in the family of curves
remain the same with smaller magnitudes of response associated
with smaller design storms.

Similarly, hydrographs for watershed outflow and for the
corresponding reservoir pool are built for the same watershed
with the magnitude of the water-input event (PMP) ranging from
40–90 cm. Figs. 10 and 11 show sets of hydrograph families for a
slow-evacuation watershed (T� ¼ 15 h). Both sets tend to support
the basic assumption under the standard unit-graph superposition
principle applied in practice that the response hydrographs essen-
tially retain their shapes with the ordinates amplified in proportion
to the magnitude of the water-input event.

Response Spectra

The peak values of response in terms of the watershed outflow and
the reservoir pool can be recorded for a continuous variation of the
centroidal lag, with the magnitude of the water-input event as a
parameter. The resulting family of curves constitutes the response
spectra for the response quantity under consideration. Figs. 12 and
13 show the response spectra for the watershed outflow QðtÞ and
the reservoir pool hðtÞ, respectively.

The set of response spectra for the watershed outflow is very
sensitive to the particular order of the resulting aleatory permuta-
tion of the hourly storm precipitation values during the first 6 h of
the water-input event. More unfavorable system responses are
obtained when the largest incremental rain value occurs during
the sixth storm hour than the responses for those storms in which
the largest incremental rain value occurs during the first hour.
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This sensitivity becomes apparent for the rapid-evacuation water-
sheds (those with relatively short T�), as evidenced by the non-
smooth gradient of Q;max with respect to the storm magnitude
(PMP) in Fig. 12.

By contrast, the set of spectra for the reservoir pool exhibits rel-
atively smooth transitions when the storm magnitude is varied.
There are two fundamental reasons for this behavior: (1) the peak
response of hðtÞ for a given hydrograph systematically shows a de-
lay with respect to the peak of QðtÞ (see Figs. 9 and 10), occurring
at some time-distance of the particular hourly incremental rain
lumps during the first 6 h of storm; and (2) the peak response
of hðtÞ occurs after a second filter in the system has acted on
the water input to the watershed. The reservoir-pool spectra in
Fig. 13 can be closely approximated by the following useful math-
ematical expression:

h;max ¼ h2ðT�Þ þ ½h1ðT�Þ � h2ðT�Þ�
50:8

· ðPMP� 38Þ;
PMP ≥ 38 ð24Þ

where

h1ðT�Þ ¼ 14:375� 2:566 · lnðT�Þ

h2ðT�Þ ¼ 5:128� 0:1583 · ðT�Þ þ 0:002263 · ðT�Þ2

and the PMP is given in centimeters of rain.

Residual Response

Similarly, the residual values of response in terms of the watershed
outflow and the reservoir pool at the end of the observed history can
be recorded and represented graphically, as in Figs. 14 and 15, re-
spectively. The recorded values take place at a far time-distance of
the local rain distribution during the first six storm hours, and the
resulting curves exhibit smooth gradients with the magnitude of the
water-input event. The watershed residual outflow in Fig. 14 can be
closely approximated by the following mathematical expression:

Q;res ¼ Qr2ðT�Þ þ ½Qr1ðT�Þ � Qr2ðT�Þ�
50:8

· ðPMP� 38Þ;
PMP ≥ 38 ð25Þ

where

Qr1ðT�Þ ¼ �18:6213þ 3:5508 · T� þ 0:4670 · ðT�Þ2 � 0:00976

· ðT�Þ3

Qr2ðT�Þ ¼ �1:7401� 0:4169 · T� þ 0:2275 · ðT�Þ2 � 0:00422

· ðT�Þ3

and the PMP is given in centimeters of rain.
Likewise, the reservoir residual pool in Fig. 15 can be closely

approximated by the following mathematical expression:

h;res ¼ hr2ðT�Þ þ ½hr1ðT�Þ � hr2ðT�Þ�
50:8

· ðPMP� 38Þ;
PMP ≥ 38

ð26Þ

where
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hr1ðT�Þ ¼ 1:0613þ 0:1088 · T� þ 4:76 · ð10�4Þ · ðT�Þ2
� 4:427 · ð10�5Þ · ðT�Þ3

hr2 ¼ 0:5857þ 0:0628 · T� � 5:4055 · ð10�4Þ · ðT�Þ2
� 8:77 · ð10�6Þ · ðT�Þ3

Probabilistic Model

Instantaneous Response Distributions

Next, two fundamental variables into the routing of the water-input
event through the watershed-reservoir-dam system, namely, the
storm magnitude and the watershed centroidal lag, are assumed ran-
dom. The 6-h point storm magnitude is modeled with the extreme-
value distribution Type I, of the largest values (Gumbel distribu-
tion), with mean value given by the deterministic assessment of
the 6-h point PMP (Miller and Clark 1960; USBR 1976, 1977),
and with a coefficient of variation estimated as 0.1. The watershed
centroidal lag is assumed lognormally distributed, with mean value
given by the deterministic assessment and with a coefficient of
variation estimated as 0.3. The objective in this investigation is
to identify the instantaneous distribution of the response hydro-
graph for the reservoir pool, hðtÞ, because this random process rep-
resents the effective hazard on the dam (de Béjar 1999). Sampling
is conducted on the basis of Monte Carlo simulations (Benjamin
and Cornell 1970; Soong and Grigoriu 1993).

Ten thousand simulations were conducted on the basic water-
shed-reservoir-dam system, allowing both the storm magnitude
and the watershed centroidal lag to assume random realizations.
Subsequently, the variates for the reservoir pool at times t ¼
12 h and t ¼ 24 h and the peak value of the reservoir pool regard-
less of the time of occurrence were examined. On the basis of ex-
ploratory statistical analysis of the data generated for these three
variates (MathSoft 1999; de Béjar 2001), it was concluded that
the best fit was provided by the lognormal distribution, which
fit the data accurately and has sufficient simplicity for engineering
applications. However, the normal distribution also produced sat-
isfactory goodness-of-fit to the data, and therefore, flood hazard

curves were produced separately on both assumptions, a lognormal
and a normal pool random process hðtÞ, for comparison.

To generate the probability density function of the pool response
hðt�Þ at time t�, 1,000 simulations were conducted, and the sample
coefficient of variation of the variate hðt�Þ was inferred from the
data. The mean value of hðt�Þ was calculated from the deterministic
model by using the stipulated mean values of the storm magnitude
and the watershed centroidal lag. This second-moment characteri-
zation of the variate completely defines the postulated underlying
distribution, whether lognormal or normal. Correspondingly, sim-
ilar calculations for the variate peak value in the watershed response
history hðtÞ, regardless of the time of occurrence, produced sample
estimations for the second-moment characterization of the
maximum value of hðtÞ, which completely defines the postulated
underlying distribution. The desired hazard curve is given by
the associated complementary probability distribution function
(Benjamin and Cornell 1970).

Noise in the Reservoir

Consider that the bottom of the reservoir may be randomly covered
with sediments over time; that topographical surveys are imperfect,
particularly in the vicinity of the boundary of the reservoir; or that
the actual values of the regression coefficients α and β for the gra-
dient of reservoir storage with changes in reservoir pool may de-
viate randomly from the theoretical estimations. The influence of
these factors on the reservoir response can be modeled by including
a Gaussian noise term in the governing differential equation for the
reservoir (Jiang 1998). The result of such formulation is equivalent
to adding to the reservoir-pool response obtained previously [upon
solving Eq. (19)] the contribution to the response from the
Gaussian noise term, ℏðtÞ, which is governed by the following
zero-initial-condition Itō stochastic differential equation (Larson
and Shubert 1979; Soong and Grigoriu 1993):

dℏðtÞ
dt

¼ σ
G½hðtÞ� ·

dW0ðtÞ
dt

ð27Þ

where hðtÞ = total reservoir-pool response (including the contribu-
tion from the noise); dW0ðtÞ=dt = white Gaussian noise; and
σ = noise intensity. This expression may also be written as the fol-
lowing special case of the Langevin’s equation:

dℏðtÞ ¼ σ
G½hðtÞ� · dW0ðtÞ ð28Þ

where W0 = standard Wiener process. The solution for this unpre-
dictable noise is given by the following Wiener integral:

ℏðtÞ ¼ σ ·
Z

t

0

dW0ðτÞ
G½hðτÞ� ð29Þ

which may be expressed in discrete form for numerical calculations
as the following Itō summation:

ℏðtiÞ ¼ σ ·
Xti�Δt

tk¼0

1
αþ β · hðtkÞ

·ΔW0ðtkÞ ð30Þ

where ΔW0ðtkÞ ¼ W0ðtkþ1Þ �W0ðtkÞ = zero-mean Gaussian pro-
cess with variance Δtk ¼ tkþ1 � tk ¼ Δt; and Δt = time step.

The empirical value of the noise intensity, σ, must be identified
for the specific reservoir under study, and it is arbitrarily taken as
σ ¼ 1 dkm3·s�1=2 for numerical calculations in this investigation.
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Fig. 15. Family of residual reservoir pools at the end of the considered
history (t ¼ 60 h) for several values of the water-input event PMP
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Fig. 16 shows the mean function for the reservoir pool assumed
to be given by the deterministic response hydrograph for the
watershed-reservoir-dam system with the input data described
previously. The evolution of the corresponding response random
process assumed as lognormally distributed is also shown in
Fig. 16. Generally, as time increases along the recession limb, there
is less dispersion in the prediction because the response variances
decrease. The pool response to the water-input event with noise in
the reservoir is included in the figure for comparison with the cor-
responding response without noise. In general, the presence of the
noise increases the dispersion of the response random process
under consideration. Fig. 17 shows the flood hazard curve for
the reservoir pool with and without noise in the reservoir, assuming
that the response random process is lognormally distributed. The
noise causes the hazard to increase substantially. For example,

given that the crest of the nonoverflow section is approximately
9.2 m above the level of the spillway crest, the probability of over-
topping turns out to be 6.2% for a noisy reservoir, as compared to
2.4% for an ideal reservoir. Figs. 18 and 19 show a parallel develop-
ment for the pool and the associated flood hazard curve, respec-
tively, assuming that the reservoir-pool response process is
normally distributed. Now the probability of overtopping is
4.5% for a noisy reservoir, as compared to 1.0% for an ideal res-
ervoir.

In general, the magnitude of the hazard is increased when the
response processes as taken as lognormally distributed, as com-
pared to the results with the normal assumption. The lognormal
assumption for the response process proved accurate in this inves-
tigation for the probabilistic simulation of routing of a water-input
event through a watershed-reservoir-dam system. Therefore, the
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Fig. 17. Flood hazard curve for the random process hðtÞ, assumed log-
normal, with and without noise in the reservoir
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noise in the reservoir (for clarity, evolving probability density functions
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use of the lognormal distribution is recommended for practical
applications to real systems in the field.

Conclusions

The following conclusions are derived from this investigation:
1. A rational theoretical model was developed to represent

the routing of a water-input event through a watershed-
reservoir-dam system and to assess its response in terms of
the inflow design flood into the reservoir and the resulting re-
servoir pool. However, the model includes various simplifica-
tions to allow for mathematical tractability, and the values of
several parameters required in the parametric study were sim-
ply postulated at this time.

2. Both deterministic and probabilistic implementations of the
model allow ready computational analysis useful for design
and for situational assessment.

3. At this time, the random processes for the overall system re-
sponse appear to be best modeled as lognormally distributed.
However, although the methodology developed in this inves-
tigation is solid, mutual validation may force the evolution of
specific probabilistic models as more information becomes
available.

4. Noise in the reservoir component is easily included in the prob-
abilistic formulation of the model and has an important influ-
ence in the magnitude of the resulting hazard. This is an
innovative contribution of this study. An accurate assessment
of the noise intensity may prove difficult in practice, but rea-
listic reliability assessments can be conducted using bounds on
the noise intensity.

5. The model provides direct evaluation of the probability of
overtopping in a given flood scenario and provides the funda-
mental hazard curve for complete risk analysis of the dam
structure, including the possible sliding, overstressing, and
overturning modes of failure.
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Notation

The following symbols are used in this paper:
A, B = end points of the longest reach in the drainage basin

under consideration;
ai, bi = empirical coefficients;

b = weir length;
C = constant of integration;
c = discharge coefficient;

dkm3 = km3=10;
d=dt = time derivative;

G½hðtÞ� = reservoir storage expressed as a function of the
reservoir pool;

H = elevation difference between the end
Points A and B;

hðtÞ = reservoir-pool response defined as the reservoir
water level over the spillway crest;

h;max = maximum value of the reservoir pool;
h;res = residual reservoir pool;

hriðT�Þ;i¼1;2 = auxiliary functions of T�;
h1, h2 = auxiliary functions of T�;
ℏðtÞ = Gaussian noise component of the reservoir pool

response hðtÞ;
Ia = initial abstraction;
i = index;

k� = reciprocal of T�;
L = length in kilometers of the longest watercourse in

the watershed (equivalent to Lr expressed in
kilometers);

Lr = length of the longest reach in the drainage basin;
PMP = probable maximum precipitation;

pi = accumulative runoff at the end of the ith time
interval;

p�i = recalculated value of pi after considering a physical
lower bound for the hourly loss during the ith time
interval;

QðtÞ = inflow to the reservoir; i.e., the response of the
watershed to the water-input event;

Q;max = maximum value of the watershed outflow;
Q;res = residual value of the watershed outflow;

QriðT�Þ;i¼1;2 = auxiliary polynomial functions of T�;
qðtÞ = watershed flow response;

q½hðtÞ; c� = spillway outflow as a function of the reservoir pool
response hðtÞ and the discharge coefficient c;

qpk = maximum value of the reservoir outflow;
rðtÞ = rate of rain;
ri = accumulative rainfall in the actual-size watershed at

the end of the ith time interval;
S = local hydrologic soil-cover complex number;

SðtÞ = watershed storage;
T� = centroidal lag between the inflow and outflow

hydrographs;
t = time;

tw = termination time of the water-input event;
UW = velocity of propagation of the flood wave;
uðtÞ = unit-impulse response function;

WoðtÞ = standard Wiener process;
z = weir elevation;

α, β = empirical coefficients;
Δ = increment symbol;

ΔLi = loss corresponding to the ith time interval;
δðtÞ = Dirac delta function applied at the origin

of time;
ε = infinitesimal time interval;P
= summation symbol;

σ = noise intensity; and
ωo = inflow magnitude.
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Queries

1. Please provide 10 mi2 in SI units.

2. The double parentheses in the spillway outflow have been changed to square brackets as per ASCE style. Please confirm if this
change is acceptable.

3. Please carefully check each figure and caption to ensure each is accurate.
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